Evolution of Biologically-Inspired Ion Channel Neural Networks for Simple Brain Behaviours

Submission ID	3000308
Submission Type	Poster
Торіс	Artificial Intelligence
Status	Submitted
Submitter	Steven Pyle
Affiliation	University of Central Florida

SUBMISSION DETAILS

Presentation Type Either Poster or Oral Presentation

Presentation Abstract Summary A novel biologically-inspired Neuron model is introduced and utilized within a Genetic Algorithm (GA)-driven attractor network to realize simple animal behaviours such as ant foraging. By modeling the operation of ion channels, which modulate biological neuron spiking behaviours, with simple state-based computations, a biologically mimetic neuron model incorporating the complex spiking behaviours of real neurons is realized. By utilizing a GA with a population of 100 individual networks to evolve the synaptic connections given an array of 25 neurons per individual, simple brain functionality is demonstrated to emerge within 500 generations.

Paper Upload (PDF) paper draft-2017-05-26-1158.pdf

Co-author Information

* Presenting Author

First Name	Last Name	Affiliation	E-mail
Steven *	Pyle *	University of Central Florida	stevendpyle@gmail.com
Pamela	Douglas	University of California, Los Angeles	pamelita@ucla.edu

Keywords

Keywords

model of neural networks; dendrite; spiking neuron; Hebbian learning; hierarchical network; generalization; clustering; unsupervised learning; supervised learning; encode; biological plausibility; processing unit; pattern recognition; online learning; error criterion.