Contextual Dependence of Human Preference for Complex Objects: A Bayesian Statistical Account

Submission ID	3000290	
Submission Type	Poster	
Торіс	Cognitive Science	
Status	Submitted	
Submitter	Chaitanya Ryali	
Affiliation	UC San Diego	

SUBMISSION DETAILS

Presentation Type Either Poster or Oral Presentation

Presentation Abstract Summary Understanding how humans perceive the likability of high-dimensional "objects" such as faces is an important problem in both cognitive science and AI/ML. Existing models of human preferences, in both machine learning and psychology, generally assume these preferences to be fixed. However, human assessment of facial attractiveness appears to be highly context-dependent. Specifically, the classical Beauty-in-Averageness (BiA) phenomenon, whereby a face morphed from two original faces is judged to be more attractive than the originals, significantly diminishes when (1) the original faces are recognizable, or (2) when the attractiveness judgment is preceded by a similarity judgment of the morph relative to the originals, or (3) when the morph is bi-racial and the attractiveness judgment is preceded by a race categorization. Intriguingly, doing the similarity judgment first (2) significantly increases the perceived attractiveness of the originals. Here, we present a statistically grounded explanation of contextual dependence of human attractiveness judgment.

Paper Upload (PDF) CCN_2017_Facial_Attractiveness_ver3.pdf

Co-author Information

* Presenting Author

First Name	Last Name	Affiliation	E-mail
Chaitanya *	Ryali *	UC San Diego	rckrishna@ucsd.edu
Angela	Yu	UC San Diego	ajyu@ucsd.edu

Keywords

Keywords

Human Preference; Bayesian Model; Representation; Perception; Memory; Context Sensitivity