Implementation of Attentional Bistability in a Computational Model of the Dragonfly Visual System

Submission ID 3000232

Submission Type Poster

Topic Neuroscience

Status Submitted

Submitter Pedro Mediano

Affiliation Imperial College London

SUBMISSION DETAILS

Presentation Type Either Poster or Oral Presentation

Presentation Abstract Summary The dragonfly is notoriously effective at hunting moving prey. Recent research has provided evidence that the selective visual attention of one of the dragonfly's visual neurons plays a key role in the neural mechanisms underlying the dragonfly's hunting ability. In this work, we present a hybrid computational model that includes multi-compartmental spiking neurons of the dragonfly visual system, as well as spike-timing-dependent plasticity (STDP)-based pattern recognition and action selection mechanisms to replicate this predatory behaviour in a simplified simulated environment. We find that under certain conditions two coupled visual neurons are capable of demonstrating bistable switching between input patterns, in agreement with empirical electrophysiological findings that evidence the role of these neurons in target selection. We also demonstrate the feasibility of training an end-to-end dragonfly visual system to map retinal input to motor actions in a biologically plausible way.

Paper Upload (PDF) Mediano Abstract.pdf

Co-author Information

* Presenting Author

First Name	Last Name	Affiliation	E-mail
Juan Carlos	Farah	Imperial College London	juancarlos.farah@epfl.ch
Christos	Kaplanis	Imperial College London	christos.kaplanis14@impe rial.ac.uk
Christopher	Snowden	Imperial College London	christopherphilipsnowden @gmail.com
Luka	Milic	Imperial College London	lukam321@gmail.com
Zafeirios	Fountas	Imperial College London	zfountas@imperial.ac.uk

Pedro * Mediano *	Imperial College London	pmediano@imperial.ac.uk
-------------------	-------------------------	-------------------------

Keywords

Keywords
Spiking Neural Networks;
Spike-Timing-Dependent-Plasticity
Bistability
Dragonfly
CSTMD1
Reinforcement Learning