The Decision Decoding Toolbox (DDTBOX): A Multivariate Pattern Analysis Toolbox for Event-Related Potentials

Submission ID 3000131

Submission Type Poster

Topic Cognitive Science

Status Submitted

Submitter Daniel Bennett

Affiliation Princeton University

SUBMISSION DETAILS

Presentation Type Poster Presentation

Presentation Abstract Summary In recent years, multivariate pattern analysis (MVPA) has become an increasingly popular technique for analysis of neuroimaging data. Here we present the DDTBOX, an open-source MVPA toolbox for analysis of electroencephalography data using MATLAB and the LIBSVM library. The DDTBOX uses support vector machines trained on patterns of event-related potential (ERP) amplitude data for the classification or regression of experimental variables of interest. MVPA for ERPs complements conventional hypothesis-driven ERP analysis, and permits the detection of subtle decision-related information that might not be evident in conventional ERP analyses. MVPA for ERPs also allows researchers to perform an exploratory search for information in situations where no ERP component is known to be specifically linked to a cognitive process of interest. The DDTBOX is an easy-to-use and open-source software package that allows researchers to derive information time-courses for various cognitive processes. It can be applied to data from a variety of experimental paradigms, and may therefore prove a valuable tool for the neuroimaging community.

Co-author Information

* Presenting Author

First Name	Last Name	Affiliation	E-mail
Daniel *	Bennett *	Princeton University	daniel.bennett@princeton .edu
Daniel	Feuerriegel	The University of Melbourne	dfeuerriegel@unimelb.ed u.au
Phillip	Alday	The University of South Australia	phillip.alday@unisa.edu.a u
Stefan	Bode	The University of Melbourne	sbode@unimelb.edu.au

Keywords

Keywords
EEG
MVPA
event-related potentials
machine learning
decoding
toolbox